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Abstract
We present an effective Hamiltonian theory available for some quasi-
periodically driven quantum systems which does not need the knowledge of
the Fourier frequencies of the control signal. It could also be available for
some chaotically driven quantum systems. It is based on the Koopman approach
which generalizes the Floquet approach used with periodically driven systems.
We show the properties of the quasi-energy states (eigenvectors of the effective
Hamiltonian) as quasi-recurrent states of the quantum system.

Keywords: hybrid classical-quantum systems, driven quantum systems, quan-
tum quasienergy states

(Some !gures may appear in colour only in the online journal)

1. Introduction

Periodically driven quantum systems is a subject of great interest in quantum physics. It is
well known that the consistent framework to treat this subject is the Floquet theorem [1] which
has been !rstly considered in quantum dynamics in [2]. Since this pioneer work, the subject
has been extensively studied [3–14]. A useful method to study periodically driven quantum
systems, which is directly induced by the Floquet theory, consists to use a time-independent
effect if Hamiltonian governing the stroboscopic dynamics (evolution on the whole period)
[15].

Some attempts to generalize this approach has been proposed for quasi-periodic driven
systems (time-dependent systems characterized by several irrationally related frequencies)
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[11, 16–18]. These studies has been confronted to the fact the Floquet theory cannot be
applied for non-periodic systems. In this paper, we want generalize the effective Hamiltonian
approach to almost-periodically driven systems, i.e. systems such that ∀t, ∀ε > 0, ∃Tε,t > ηε,t
such that ‖H(t + Tε,t) − H(t)‖ < ε, with ηε,t such that ‖H(t + ηε,t) − H(t)‖ > ε; H(t) being
the time-dependent Hamiltonian of the driven system. This situation includes periodically and
quasi-periodically driven systems (but in contrast with the previous works, we do not need the
decomposition of time-dependent Hamiltonian into Fourier modes associated with each fre-
quencies), but also systems driven by classical "ows with Poincaré recurrence [19] (including
chaotic Hamiltonian "ows) and systems driven by some stochastic "ows as for example Brow-
nian motions onto a compact manifold without boundary. These two situations can modelize a
quantum system driven by a periodic control but affected by (chaotic or stochastic) noises [20].
Our approach is based on the Koopman approach of the dynamical systems [19, 21, 22] and fol-
lows our previous work concerning the mathematical properties of the Schrödinger–Koopman
(SK) quasienergy states [23]. In some sense, our appoach generalizes to time-dependent sys-
tems the phenomenon of quantum recurrence/revival [24, 25] found for time-independent
Hamiltonians.

This paper is organized as follows. Section 2 introduces the effective Hamiltonians gov-
erning almost-periodically driven quantum systems. Concrete formulae for these effective
Hamiltonians are computed in section 3 and we present the expected dynamical behaviours
induced by the almost-periodicity. Finally, some illustrations are presented section 4.

2. SK and first recurrence effective Hamiltonians

2.1. The generic model

We consider a quantum system described by a Hilbert space H and governed for its free evo-
lution by a Hamiltonian h̄ω1Ĥ where h̄ω1 is the characteristic transition energy of the system
(Ĥ is the reduced free Hamiltonian). The quantum system is driven by a classical discrete "ow
ϕ : Γ→ Γ onto a phase space Γ supposed to be a compact manifold without boundary (in gen-
eral Γ is an N-torus). Let µ : T → R+ be an invariant measure onto Γ (T is a σ-algebra of Γ
(generally the Borelian σ-algebra), and ∀O ∈ T (open set of Γ), µ(ϕ(O)) = µ(O)), and such
that µ(Γ) < ∞. Let T0 be the sampling period on which the dynamics of the quantum system
is discretized. We suppose that the evolution operator of the driven quantum system can be
written in the following form ∀n ∈ N:

Un ≡ U((n + 1)T0, nT0) = e−ı
ω1
ω0

Ĥe−ıV(ϕn(θ0)), (1)

where ω0 = 2π
T0

is the sampling frequency and V(θ) is the interaction operator for the
value θ ∈ Γ of the control parameters, θ0 ∈ Γ are the initial values of the control param-
eters. This form is very general. It can correspond to a time-dependent Hamiltonian
H(t) = H0 + V(ϕt(θ0)) where ϕt(θ0) = θ(t) are continuous time-dependent parameters. With

T0 * 2π
h̄ω1

we have Un = e−ı
ω1
ω0

Ĥe−ıV(ϕnT0 (θ0)) + O
(

ω1
ω0

)
(with Ĥ = H0

h̄ω1
). It can also correspond

to the time-dependent Hamiltonian H(t) = H0 +
∑

n∈N W(ϕn(θ0))δ
(

t − nT0 + ∆(ϕn(θ0))
ω0

)
of

a kicked quantum system, where W(θ) is the kick operator for the values θ ∈ Γ of
the control parameters and 0 ! ∆(θ) < 2π is the ‘angular’ delay of the kick for the
value θ (the quantum system is kicked once during a period T0 but the kick can be

delayed). In that case, Un = e−ı
H0
h̄ω0

(2π−∆(ϕn(θ0)))e−ıW(ϕn(θ0))e−ı
H0
h̄ω0

∆(ϕn(θ0)) (see for example
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[13]), which can be rewritten as Un = e−ı
ω1
ω0

Ĥe−ıV(ϕn(θ0)) with Ĥ = 2π
h̄ω1

H0 and V(ϕn(θ0)) =

eı
H0
h̄ω0

∆(ϕn(θ0))W(ϕn(θ0))e−ı
H0
h̄ω0

∆(ϕn(θ0)).
By the Poincaré recurrence theorem [19], we have for µ-almost all θ ∈ Γ

∀ε > 0, ∃pε,θ > 0, ‖ϕpε,θ (θ) − θ‖ < ε, (2)

whereas ∃n < pε,θ for which ‖ϕn(θ) − θ‖ > ε (the norm in Γ is the Euclidean norm of the
control parameters ‖θ‖2 =

∑
i(θ

i)2). pε,θ being not unique, we set pε,θ as being the smallest
value satisfying the relation (2). If θ0 is p-cyclic (ϕp(θ0) = θ0), then pε,θ0 = pε,ϕn(θ0) = p (pε,θ
is independent of ε and is the same for all point of the orbit of θ0: Orb(θ0) = {ϕn(θ0)}n∈N).
This case corresponds to a periodically driven quantum system. We recover the quasi-periodic
case if Orb(θ0) is a torus (the overline denotes the topological closure) and if pε,ϕn(θ0) = pε,θ0

(the almost-period is the same on the whole of Orb(θ0)). For the case of a chaotic "ow ϕ, pε,θ is
‘erratically’ dependent on ε and θ. And !nally, ifϕ is a stochastic "ow, pε,θ is a random variable.
Since a "ow can have several behaviours, it can be interesting to decompose the phase space
into ergodic components: Γ =

⋃
e Γe, with µ(Γe ∩ Γe′) = 0 (for e′ -= e) and with Γe = Orb(θ)

for µ-almost all θ ∈ Γe.
ϕ modelizes a control applied on the quantum system (by electromagnetic !elds, STM,

ultra-fast kicks,. . . ), or a classical noise affecting the quantum system (when ϕ is chaotic or
stochastic); or the both ones.

2.2. Definition of the effective Hamiltonians

Let U(θ) = e−ı
ω1
ω0

Ĥe−ıV(θ). The SK quasienergy states are de!ned as solutions of the equation
(see [23]):

U(θ)|Zµie, θ〉 = e−ıχie |Zµie,ϕ(θ)〉 (3)

for θ ∈ Γe and where χie is called quasienergy (χie depends only on the ergodic component
Γe on which θ belongs). A quasienergy becomes another quasienergy under the gauge change:
χie → χie − ıλ and |Zµie, θ〉 → fλ(θ)|Zµie, θ〉, where λ and fλ are a Koopman value and the
associated Koopman mode (i.e. fλ(ϕ(θ)) = eλ fλ(θ), λ ∈ ıR). χie does not depend on θ ∈ Γe

(due to the quasienergy orbital stability theorem [23]) and in general |Zµie, θ〉 = 0 for θ /∈
Γe. We choose {χie}i=1,...,dim H;e such that (|Zµie, θ〉)i=1,...,dim H be a basis of H for all θ ∈ Γe.
{χie}i=1,...,dim H;e is called fundamental quasienergy spectrum of the driven quantum system.
Moreover for µ-almost all θ ∈ Γe, 〈Zµie, θ|Zµ je, θ〉 = δi j.

From equation (3) we de!ne the SK effective Hamiltonian as being:

Heff(θ) =
∑

e

∑

i

χie|Zµie, θ〉〈Zµie, θ| (4)

(by assuming that |Zµie, θ〉 = 0 for θ /∈ Γe). To understand the role of Heff(θ) it needs to
consider its relation with the !rst recurrence Hamiltonian Heff

ε (θ) de!ned by

e−ıpε,θHeff
ε (θ) = U(ϕpε,θ−1(θ)) . . . U(ϕ(θ))U(θ). (5)

Firstly, if θ is p-cyclic, then Heff
ε (θ) is independent of ε, e−ıpHeff

ε (θ) = U(ϕp−1(θ)) . . . U(θ) and is
equal to the SK effective Hamiltonian Heff

ε (θ) = Heff(θ) which is here the usual Floquet effec-
tive Hamiltonian of the periodic driven quantum system (|Zµie, θ〉 is the Floquet quasienergy
state de!ned by U(ϕp−1(θ)) . . . U(θ)|Zµie, θ〉 = e−ıpχie |Zµi, θ〉, see [13]).
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If θ is not p-cyclic, we have only U(ϕpε,θ−1(θ)) . . . U(θ)|Zµie, θ〉 = e−ıpε,θχie |Zµie,ϕpε,θ (θ)〉,
but because of equation (2) we have

|Zµie,ϕpε,θ (θ)〉 = |Zµie, θ〉 + ∂ν |Zµie, θ〉ε̃ν(θ) + O(ε2), (6)

where ε̃(θ) ≡ ϕpε,θ (θ) − θ (‖ε̃(θ)‖ = O(ε)). Finally, we have e−ıpε,θHeff
ε (θ)|Zµie, θ〉 =

e−ıpε,θχie |Zµie, θ〉 + e−ıpε,θχie∂ν |Zµie, θ〉ε̃ν(θ) + O(ε2) and then

e−ıpε,θHeff
ε (θ) =

(
1 + Aν(θ)ε̃ν (θ) + O(ε2)

)
e−ıpε,θHeff(θ) (7)

with

Aν(θ) =
∑

e

∑

i j

〈Zµ je, θ|∂ν |Zµie, θ〉|Zµ je, θ〉〈Zµie, θ|. (8)

More precisely, consider a sequence (εn)n∈N such that εn+1 < εn, limn→+∞ εn = 0 and such that
∀ε ∈ ] εn+1, εn ], pε,θ = pεn ,θ. Since θ is not cyclic, limn→+∞ pεn,θ = +∞. We have clearly,

lim
n→+∞

‖eıpεn ,θHeff(θ)e−ıpεn ,θHeff
εn (θ) − 1‖ = 0. (9)

The SK effective Hamiltonian Heff is the limit in sense of equation (9) of the !rst recur-
rence Hamiltonian when the recurrence accuracy tends to zero. Moreover, since e−ıpε,θHeff

ε (θ) =
eAν (θ)ε̃ν (θ)+O(ε2)e−ıpε,θHeff(θ), we have (see appendix A):

Heff
ε (θ) = Heff(θ) + ıA ν(θ)

ε̃ν(θ)
pε,θ

+ O
(

ε2

pε,θ

)
, (10)

where

A ν(θ)eji =






Aν(θ)eii if i = j

ıpε,θ(χie − χ je)
1 − e−ıpε,θ(χie−χ je) Aν(θ)eji if i -= j

(11)

(with Ae ji ≡ 〈Zµ je, θ|A|Zµie, θ〉). Note that Heff is the limit of Heff
ε in the sense of equation

(9), but limn→+∞‖Heff
εn

(θ) − Heff(θ)‖ -= 0 since (1 − e−ıp(χie−χ je))−1 has no limit at p→ +∞.
Note that pε,θ can be very large, the mean Poincaré recurrence time being 〈pε,θ〉 ∼ µ(Γe)

εdim Γ (by
supposing that µ (Bε(θ)) ∝ εdim Γ where Bε(θ) is the ball of radius ε and centred on θ in Γ).

2.3. Perturbation of quasienergy states

It could be interesting to relate the eigensystems of Heff and Heff
ε . We can compute the !rst

recurrence eigenstates, Heff
ε (θ)|Zµi, θ, ε〉 = χie,ε(θ)|Zµi, θ, ε〉, by using a perturbative expansion

from equation (10):

χie,ε(θ) = χie + ı〈Zµi, θ|∂ν |Zµi, θ〉
ε̃ν(θ)
pε,θ

+ O
(

ε2

pε,θ

)
(12)

|Zµie, θ, ε〉 = |Zµie, θ〉 −
∑

j-=i

〈Zµ je, θ|∂ν |Zµie, θ〉ε̃ν(θ)
1 − eıpε,θ(χ je−χie) |Zµ je, θ〉 + O

(
ε2

pε,θ

)

(13)

4



J. Phys. A: Math. Theor. 54 (2021) 414004 D Viennot

or conversely

χie = χie,ε(θ) − ı〈Zµi, θ, ε|∂ν|Zµi, θ, ε〉 ε̃
ν(θ)
pε,θ

+ O
(

ε2

pε,θ

)
(14)

|Zµie, θ〉 = |Zµie, θ, ε〉 +
∑

j-=i

〈Zµ je, θ, ε|∂ν|Zµie, θ, ε〉ε̃ν(θ)
1 − eıpε,θ (χ je,ε(θ)−χie,ε(θ)) |Zµ je, θ, ε〉 + O(ε2). (15)

3. Physical meanings of the effective Hamiltonian

3.1. Approximate first recurrence Hamiltonian

In this section we want to exhibit concrete expressions for Heff
ε (θ).

3.1.1. Low frequency case. Firstly we consider the low frequency regime where ω0 * ω1

(there are a lot of Rabi oscillations during a sampling period). This regime is consistent only
with a kicked quantum system where the sampling period is the kick period. We have

U(θp) . . . U(θ0) = e−ı
ω1
ω0

Ĥe−ıVp . . . e−ı
ω1
ω0

Ĥe−ıV0 (16)

= e−ı(p+1) ω1
ω0

Ĥe−ıṼ p . . . e−ıṼ0 (17)

with Vn ≡ V(θn) and Ṽn ≡ eın ω1
ω0

ĤVne−ın ω1
ω0

Ĥ . V(θ) being supposed bounded, we have
‖V(θ)‖ * ω1

ω0
. It follows that

U(θp) . . . U(θ0) = e−ı(p+1) ω1
ω0

Ĥe−ı
∑p

n=0 Ṽn+O(p‖V‖2) (18)

= e
−ı(p+1) ω1

ω0
Ĥ−ı

∑p
n=0 f−ı(p+1)

ω1
ω0

Ĥ
[Ṽn]+O

(
pf

(
ıpω1

ω0
δ
)
‖V‖2

)

, (19)

where fX[Y] = f (adX)[Y] with f (x) = x
1−e−x and adX[Y] = [X, Y], see appendix A concern-

ing the Baker–Campbell–Hausdorff formula. δ is the gap between eigenvalues of Ĥ which
maximizes f (ıpω1

ω0
δ). By applying this result to the de!nition of Heff

ε equation (5) we !nd

Heff
ε (θ) =

ω1

ω0
Ĥ +

1
pε,θ

pε,θ−1∑

n=0

f−ıpε,θ
ω1
ω0

Ĥ[Ṽn(θ)] + O
(

f (ıpε,θ
ω1

ω0
δ)‖V‖2

)
, (20)

where Ṽn(θ) = eın ω1
ω0

ĤV(ϕn(θ))e−ın ω1
ω0

Ĥ . To interprete this formula, we can re-express it in the
eigenbasis of Ĥ (Ĥ|i〉 = λi|i〉):

Heff
ε (θ) =

∑

i

(
ω1

ω0
λi + 〈i|V̄θ|i〉

)
|i〉〈i|

+
∑

i, j-=i

f
(
−ıpε,θ

ω1

ω0
(λi − λ j)

)
〈i|V̄θ| j〉|i〉〈 j|

+ O
(

f
(

ıpε,θ
ω1

ω0
δ

)
‖V‖2

)
, (21)
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Figure 1. Plot of the function x 2→
∣∣ −ıx

1−eıx
∣∣ appearing in the developments by the

Baker–Campbell–Hausdorff formula (see appendix A).

where V̄θ = 1
pε,θ

∑pε,θ−1
n=0 Ṽn(θ) is the average of the interaction along Orb(θ). We see that the

effective Hamiltonian corresponds to the free Hamiltonian ω1
ω0

Ĥ with its energies perturbed
by the average interaction. This one induces also couplings between the free energy states
which have magnitudes proportional to | f

(
−ıpε,θ ω1

ω0
(λi − λ j)

)
|. The function x 2→ | f (−ıx)|

is plotted !gure 1. Since pε,θ
ω1
ω0

is large, excepted if maxi, j-=i|λi − λ j| is really very small, these
couplings are strong. Moreover we have resonances if pε,θ ω1

ω0
|λi − λ j| ∈ 2πN∗. Due to these

resonances, the behaviour of Heff
ε (θ) will be strongly sensitive to the value of ω1

ω0
.

3.1.2. High frequency case. Now we consider the high frequency regime where ω0 3 ω1

(there are a lot of samplings by the discrete description during one Rabi oscillation). This is
the only one regime for a time discretization of a dynamics governed by a continuous time-
dependent Hamiltonian where the sampling period is the discretization step. This regime can
also be consistent with a kicked quantum system. We consider several subcases depending on
the behaviour of V(θ).

Case 1: V(θ) ∼ O(ω1/ω0): We can compute U(θp) . . . U(θ0) = e−ı
ω1
ω0

Ĥe−ıVp . . . e−ı
ω1
ω0

Ĥe−ıV0

by using the Baker–Campbell–Hausdorff formula at the !rst order. We have then

Heff
ε (θ) =

ω1

ω0
Ĥ +

1
pε,θ

pε,θ−1∑

n=0

V(ϕn(θ)) + O
((

ω1

ω0

)2
)

. (22)

In that case the effective Hamiltonian is just the sum of free Hamiltonian and the average
interaction.

Case 2: [V(θ), V(θ′)] = 0: We suppose that [V(θ1), V(θ2)] = 0, ∀θ1, θ2 ∈ Orb(θ). We have
then by using the Baker–Campbell–Hausdorff formula explained appendix A:

U(θp) . . . U(θ0) = e−ı
ω1
ω0

Ĥe−ıVp . . . e−ı
ω1
ω0

Ĥe−ıV0 (23)

6



J. Phys. A: Math. Theor. 54 (2021) 414004 D Viennot

= e−ı
∑p

n=0 Vn e
−ı

ω1
ω0

∑p
n=0 H̃n+O

(

p
ω2

1
ω2

0

)

(24)

= e
−ı

∑p
n=0 Vn−ı

ω1
ω0

∑p
n=0 f−ı

∑p
q=0 Vq

[H̃n]+O
(

pf (ıpδ)
ω2

1
ω2

0

)

, (25)

where H̃n = eı
∑n

q=0VqĤe−ı
∑n

q=0Vq . δ is the gap between eigenvalues of the average interaction
operator which maximizes f (ıpδ). By applying this result to the de!nition of Heff

ε equation (5)
we !nd

Heff
ε (θ) =

1
pε,θ

pε,θ−1∑

n=0

V(ϕn(θ)) +
ω1

ω0

1
pε,θ

pε,θ−1∑

n=0

f
−ı

∑pε,θ−1
q=0 V(ϕq(θ))

[H̃n(θ)]

+ O
(

f (ıpε,θδ)
(
ω1

ω0

)2
)

, (26)

where H̃n(θ) = eı
∑n

q=0V(ϕq(θ))Ĥe−ı
∑n

q=0V(ϕq(θ)).
Case 3: V(θ) = v(θ) + W(θ) with [v(θ), v(θ′)] = 0 and W(θ) ∼ O(ω1/ω0): This case is the

combination of the two previous ones, with V(θ) = v(θ) + W(θ), where W(θ) ∼ O(ω1/ω0)
and [v(θ1), v(θ2)] = 0, ∀θ1, θ2 ∈ Orb(θ). By using the Baker–Campbell–Hausdorff formula
explained appendix A, we have

e−ı
ω1
ω0

Ĥe−ı(v+W) = e−ı
ω1
ω0

Ĥe
−ı f−1

−ıv [W]+O
(

ω2
1

ω2
0

)

e−ıv (27)

= e
−ı

ω1
ω0

Ĥ−ı f−1
−ıv [W]+O

(
ω2

1
ω2

0

)

e−ıv. (28)

We set K = ω1
ω0

Ĥ + f −1
−ıv[W].

U(θp) . . . U(θ0) = e
−ıKp+O

(
ω2

1
ω2

0

)

e−ıvp . . . e
−ıK0+O

(
ω2

1
ω2

0

)

e−ıv0 (29)

= e−ı
∑p

n=0 vne
−ı

∑p
n=0 K̃n+O

(

p
ω2

1
ω2

0

)

(30)

= e
−ı

∑p
n=0 vn−ı

∑p
n=0 f−ı

∑p
q=0 vq

[K̃n]+O
(

pf (ıpδ)
ω2

1
ω2

0

)

(31)

with K̃n = eı
∑n

q=0vqKne−ı
∑n

q=0vq . δ is the gap between eigenvalues of the average interaction
operator which maximizes f (ıpδ). By applying this result to the de!nition of Heff

ε equation (5)
we !nd

Heff
ε (θ) =

1
pε,θ

pε,θ−1∑

n=0

v(ϕn(θ)) +
1

pε,θ

pε,θ−1∑

n=0

f
−ı

∑pε,θ−1
q=0 v(ϕq(θ))

[K̃n(θ)]

+ O
(

f (ıpε,θδ)
(
ω1

ω0

)2
)

(32)

with K̃n (θ) = ω1
ω0

eı
∑n

q = 0v (ϕq(θ)) Ĥe−ı
∑n

q = 0v (ϕq(θ)) + f −1
−ıv(ϕn(θ))

[
eı
∑n

q = 0v (ϕq(θ)) W (ϕn (θ))

e−ı
∑n

q=0v(ϕq(θ))
]
.

7



J. Phys. A: Math. Theor. 54 (2021) 414004 D Viennot

Interpretation. We consider here only the case 2, the case 1 being obvious and the case 3
being the superposition of the two !rst cases. Since we have a lot of sampling periods (a lot
of short interactions) during a Rabi oscillation, the dynamics is dominated by the interaction
operator. Let V̄θ = 1

pε,θ

∑pε,θ−1
n=0 V(ϕn(θ)) be the average of the interaction along Orb(θ). Let

(|ā〉)a be the eigenbasis of V̄θ (V̄θ|ā〉 = νa|ā〉). Onto this basis, the effective Hamiltonian can
be expressed as:

Heff
ε (θ) =

∑

a

(
νa +

ω1

ω0
〈ā|Ĥ|ā〉

)
|ā〉〈ā|

+
ω1

ω0

∑

a,b -=a

f (−ipε,θ(νa − νb))〈ā|Ĥ|b̄〉|ā〉〈b̄|

+ O
(

f (ıpε,θδ)
(
ω1

ω0

)2
)

. (33)

To understand this formula, it is instructive to consider the case where V(θ) is a kick operator of
the form V(θ) = λP(θ) where λ is the kick strength and P(θ) = |w(θ)〉〈w(θ)| is a rank-1 pro-
jection. This means that the interaction consists to kick the quantum system in the ‘direction’
|w(θ)〉. For example, with a two-level system, |w(θ)〉 as a point onto the Bloch sphere de!nes a
direction in the 3D-space. If the system is a spin kicked by ultra-short magnetic pulses, the
direction de!ned onto the Bloch sphere is identi!ed with the polarization direction of the
magnetic !eld. If ε is suf!ciently small, we have

V̄θ 4 λ

∫

Γe

P(θ)
dµ(θ)
µ(Γe)

= λρe (34)

(with θ ∈ Γe), where ρe is a mixed state (a density matrix) corresponding to the average of P(θ)
onto the ergodic componentΓe = Orb(θ) endowed with the probability measure dµ(θ)

µ(Γe) . We have
then νa = λpa where {pa} = Sp(ρe) are the probabilities to !nd the direction |ā〉 in the statisti-
cal mixture ρe. V̄θ can be then viewed as a kick of strength λ in a direction randomly chosen in
{|ā〉}a with the probability law {pa}. Ĥ induces perturbative corrections onto this probability
law but it induces also quantum coherences of magnitudes proportional to | f (−ipε,θ(νa − νb))|,
which are strong since pε,θ is large. Anew, resonances occur if pε,θ|νa − νb| ∈ 2πN∗. Note that
in the case of a kick operator with kick delays as viewed in the introduction, V(θ) depends on
ω1
ω0

(by relative phases in its representation on the eigenbasis of Ĥ). The behaviour of Heff
ε (θ)

will be also in this case strongly sensitive to the value of ω1
ω0

because of these resonances.

3.1.3. About the accuracy of the approximations. The formulae for Heff
ε (θ) found in this

section are very rough approximations. We can only consider them for qualitative discussions
or for physical interpertations. We cannot use them in qualitative discussions, especially for
numerical computations. The reason of this bad accuracy are the error magnitude of the order

of f (ıpε,θδ)
(

ω1
ω0

)2
. This one is reasonable only if the almost-period pε,θ is small (and out of the

resonances associated with the poles of f ). But, with an almost-periodic or a chaotic dynamics,
it is small only if ε is large. In that case, it is the almost-periodicity assumption which is very
rough. We have a small pε,θ only for strictly periodic dynamics or for dynamics extremely close
to a periodic dynamics.

8
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To make numerical computations of the effective Hamiltonians, it is more useful to use
directly the de!nition of the !rst recurrence Hamiltonian equation (5) or to solve equation (3)
for example by the method explained appendix B.

3.2. Expected behaviours with almost-periodically driven systems

An orbit Orb(θ) is characterized by three quantities. The !rst one is its almost-period pε,θ.
The second one is its mean diameter ∠Orb(θ), the characteristic distance onto Γ between
two opposite points of Orb(θ). It measures the mean dispersion of Orb(θ) onto Γ. And !nally
λθ the Lyapunov exponent ([6]) which measures the ‘chaoticity’ of the dynamics starting in
the neighbourhood of θ. In this section we want to present expected dynamical behaviours of
almot-periodically driven quantum systems with respect to the values of these quantities, when
the interaction V(θ) is perturbative.

By equation (5) the dynamics generated by Heff
ε (θ) during pε,θ steps is the same than

U(ϕpε,θ−1(θ)) . . .U(θ) and then ∀ψ (‖ψ‖ = 1)

Fstr
1 (θ) = |〈ψ|eı(pε,θ+1)Heff

ε (θ)Upε,θ (θ)|ψ〉|2 (35)

= 1 + O(ε), (36)

where Un(θ) = U(ϕn(θ)) . . . U(θ). For a p-cyclic orbit, Heff(θ) governs the global regime (on
the time scale of p steps) where the transient regime (with time scale lower than p steps) is
erased. The stroboscopic dynamics governed by Heff(θ) is the exact true dynamics of the quan-
tum system with the stroboscopic period p. For almost-periodic orbit, we can then be interested
by the stroboscopic !delity of the dynamics governed by Heff

ε (θ):

Fstr
n (θ) = |〈ψ|eı(npε,θ+1)Heff

ε (θ)Unpε,θ (θ)|ψ〉|2. (37)

As previously said, we have exactly Fstr
n (θ) = 1 (∀n ∈ N) for a p-cyclic orbit. Under what con-

ditions do we have Fstr
n (θ) 4 1 with an almost-periodic orbit? Firstly, this needs that λ(θ) = 0,

because if the "ow is chaotic, due to the sensitivity to initial conditions ([6]) Orb(ϕpε,θ (θ))
exponentially separates from Orb(θ) as enλθ ε (even if ‖ϕpε,θ (θ) − θ‖ < ε). In particular, we
have pε,ϕpε,θ (θ) -= pε,θ : the recurrence of the "ow in the neighbourhood of θ is erratic, the
almost-period drastically change at each recurrence. We can think that Fstr

n (θ) decreases if ω1
ω0

increases (or equivalently the approximation Fstr
n (θ) 4 1 is valid until a smaller value of n if

ω1
ω0

is larger). Indeed, as we can see it in the low frequency regime (ω1
ω0

3 1, equation (21)),
the large factors | f (−ıpε,θ

ω1
ω0

(λi − λ j))| reinforce the θ-dependent couplings 〈i|V̄θ| j〉 which
become non-perturbative. So, the small difference between 〈i|V̄θ| j〉 and 〈i|V̄ϕpε,θ (θ)| j〉 will be
ampli!ed by these factors (especially close to the resonances). This problem does not occur in
the high frequency regime. Finally we can think that the approximation Fstr

n (θ) 4 1 with small
values of ω1

ω0
is better with not too large diameters ∠Orb(θ). In the high frequency regime,

V̄θ − V̄ϕnpε,θ (θ) ∼ O(µ(Sn)) where Sn ⊂ Γ is the region delimited by Orb(θ) and Orb(ϕnpε,θ (θ)).
It is more probable that µ(Sn) quickly becomes large with n if ∠Orb(θ) is large.

By equations (5) and (3) we have

|〈Zµie,ϕn+1(θ)|Un(θ)|Zµie, θ〉|2 = 1 (38)

(with θ ∈ Γe). Un(θ) describes the complete dynamics whereas e−ınHeff
ε (θ) describes the global

dynamics without the transient "uctuations occurring at time scale lower than the almost-
period. As eigenvector of e−ıHeff(θ), the quasi-energy state |Zµie, θ〉 is then the steady state of

9



J. Phys. A: Math. Theor. 54 (2021) 414004 D Viennot

the global dynamics. Its evolution could be almost steady with the "uctuations associated with
the transient regime. Let the survival probability of the quasi-energy state be:

Psurv
n (θ) = |〈Zµie, θ|Un(θ)|Zµie, θ〉|2. (39)

We have Psurv
pε,θ

(θ) = 1 + O(ε) and Psurv
npε,θ

(θ) 4 1 in the same conditions that the previous discus-
sion (with the choice |ψ〉 = |Zµie, θ〉). The quasi-energy states are then states of the quantum
system which are almost recurrent. They are then very important as the cyclic quantum states
associated with the Floquet theory (which they are a generalization) and are associated with
some quantum phenomena as the quantum revivals [24, 25]. But moreover we can hope that
Psurv

n (θ) ≈ 1 if the "uctuations generated by V(ϕn(θ)) − V̄θ on |Zµie, θ〉 are small (V̄θ being the
average interaction operator along Orb(θ)). This needs that ∠Orb(θ) * 1, because the varia-
tions of V(ϕn(θ)) will be large if the orbit is large. We can think that the assumption Psurv

n (θ) ≈ 1
is easier satis!ed if pε,θ is not large, in order to the duration of the transient regime be short.
Moreover, if V(θ) depends on ω1

ω0
as for a kick operator with kick delay (as explained in the intro-

duction), we must have ω1
ω0

3- 1 otherwise the presence of fast oscillating phases in V(ϕn(θ))
induces strong difference between V(ϕn(θ)) and V̄θ. And !nally, to have Psurv

n (θ) ≈ 1 with
n > pε,θ, we need λθ = 0 because of the sensitivity to initial conditions of the chaotic "ows
which implies that V̄ϕpε,θ (θ)4- V̄θ.

4. Illustration

In order to illustrate the concepts presented in this paper, we consider the following driven
quantum system: a two-level quantum system de!ned by the canonical basis (|0〉, |1〉) and
the free Hamiltonian H0 = h̄ω1|1〉〈1| (for example a 1

2 -spin system with Zeeman effect),
kicked with a frequency ω0 following the kick operator V(θ) = λ|w(θ1, θ2)〉〈w(θ1, θ2)| with

|w(θ1, θ2)〉 = cos θ1|0〉 + eı
ω1
ω0

θ2
sin θ1|1〉. λ = 0.1 is the dimensionless kick strength, θ2 is

the angular kick delay, and (θ1, ω1
ω0
θ2) de!nes the kick direction in a spherical coordinates

with the z-axis corresponding to the direction of the Zeeman magnetic !eld. We have then

U(θ) = e−ı
ω1
ω0

Ĥe−ıV(θ) (with Ĥ = 2π|1〉〈1|). Since V is proportional to a rank 1 projection, it is
easy to compute the matrix exponentials: we have in the basis (|0〉, |1〉):

e−ı
ω1
ω0

Ĥ
=

(
1 0

0 e−ı2π ω1
ω0

)
(40)

e−ıV(θ) = 12 + (e−ıλ − 1)




cos2 θ1 eı

ω1
ω0

θ2

2
sin(2θ1)

e−ı
ω1
ω0

θ2

2
sin(2θ1) sin2 θ1



 . (41)

Remark: V(θ) = λeı
H0
h̄ω0

θ2
|w(θ1, 0)〉〈w(θ1, 0)|e−ı

H0
h̄ω0

θ2
= λ|w(θ1, 0)〉〈w(θ1, 0)| + ı λθ

2

h̄ω0
[H0,

|w(θ1, 0)〉〈w(θ1, 0)|] + O(ω2
1/ω

2
0). In the high frequency regime with constant θ1 the system

belongs to the case 3 viewed in section 3.1.2.
The phase space isΓ = T2 (the two-torus generated by θ = (θ1, θ2) ∈ [0, 2π]2). We consider

the uniform measure onto T2: dµ(θ) = dθ1dθ2

(2π)2 (with T the Borelian σ-algebra). The "ow ϕ ∈
Aut(T2) is then an invariant automorphism of the two-torus. We choose the Chirikov standard

10
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Figure 2. Phase portrait of the Chirikov standard map onto the torus T2, with 9 orbits
considered in the simulations.

map de!ned by:

ϕ(θ) =

(
θ1 + K sin(θ2) mod 2π

θ1 + θ2 + K sin(θ2) mod 2π

)
(42)

with K = 2. Historically the standard map models the behaviour of a kicked rotator, but it can
be considered as an universal model for kicked nonlinear oscillators [26]. The model used in
this illustration can correspond to a spin system submitted to ultrafast magnetic pulses pro-
duced by a device modelled by a nonlinear oscillator. The device receives a periodic control
signal assimilated to regular kicks of frequency ω0. But the device response is not instanta-
neous and there is a delay θ2 before the pulse emission. Due to the nonlinear character of the
device oscillations, this delay changes at each cycle. Moreover, the pulses are emitted with a
polarization angle θ1 which also changes at each cycle due to the nonlinearity. So in place of
a regular pulse train of frequency ω0, the pulse train is only almost-periodic with an almost-
period pε,θ0 depending of the initial condition of the device. The possible goal of a study of
this system with the SK effective Hamiltonian is to understand the effect of the nonlinearity at
long-term onto the kicked spin.

The phase portrait of the standard map "ow is plotted !gure 2. We can distinguish three
different areas. The !rst one is the chaotic sea (in blue !gure 2) which is an ergodic compo-
nent Γ0 = Orb(θ0) associated with a chaotic orbit. The !xed point (0, 0) is embedded in this
chaotic sea. A big island of stability centred on the !xed point (0,π) is constituted by quasi-
periodic orbits. The irrationally related frequencies of these orbits are numerous. We consider
!ve ergodic components {Γe = Orb(θe)}e=1,...,5 in this island for the numerical study. And
!nally, we have a double small island of stability with two connected components centred on
(π, 0) and (π, π) ((π, 0) # (π, π) is a two-cyclic orbit). We consider these two components as
part of a same island because the inner orbit jump from a component to the other one. We
consider three ergodic components {Γe = Orb(θe)}e=6,7,8 in this island. We have choosen an

11
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Table 1. Properties of the orbits used in the dynamics, with ε = 10−2. The almost-period
pε,θe does not depend on the choice of θe ∈ Γe except for Γ0. In some simulations we
consider also ε = 10−1 for Γ0, in that case pε,θ0 = 734. The mean diameter ∠Orb(θe)
has been estimated as the average between the maximum and the minimum diameters
of the almost closed orbits in the islands of stability. Since the chaotic sea covers a large
part of T2 its mean diameter is 2π.

e pε,θe ∠Orb(θe) λθe Region

0 25801 2π 0.415 Chaotic sea
1 108 4.7 0 Big island border
2 926 3.8 0 Big island
3 845 2.6 0 Big island
4 69 1.2 0 Big island
5 385 0.96 0 Big island centre
6 26 2 0 Double small island border
7 430 2 0 Double small island
8 42 0.5 0 Double small island centre

initial point θe in each ergodic component to start the dynamics. Except for Γ0, this choice has
no in"uence onto the results. The properties of the nine considered orbits are reported table 1.

In the numerical simulations, we can compute Ueff
ε (θ) = e−ıHeff

ε (θ) by two manners. The !rst
one consists to use equation (5):

Ueff
ε (θe) = pε,θe

√
U(ϕpε,θe−1(θe)) . . . U(θe). (43)

The second one consists to use the method presented in appendix B. The two ones provide very
similar numerical results.

4.1. Stroboscopic fidelity of the dynamics

As previously explained, the dynamics governed by Heff
ε (θ) is the global dynamics without

the "uctuations of the transient regime with small time scale. Figure 3 gives an illustration
of this. In this example, the global dynamics is the envelope of the complete dynamics, but it
is not always the case (it is necessary to tune ω1

ω0
to have this simple behaviour). As viewed

section 3.1, the average interaction V̄θ6 = 1
pθ6,ε

∑pθ6,ε
n=0 V(ϕn(θ6)) plays an important role in the

effective dynamics. Here V̄θ6 4 λ
∮
Γ6

|w〉〈w| d/
/(Γ6) = λρ6 (Γ6 being assimilated to a closed path

of length /(Γ6)) where ρ6 = p0|0〉〈0| + p1|1〉〈1| is the density matrix representing the fact
that the evolution along Γ6 can in part be viewed as a kicking of the spin in up (|0〉〈0|) or
down (|1〉〈1) directions (i.e. magnetic pulse polarizations) randomly choosen with the proba-
bility law {p0, p1}. The Rabbi oscillations of the spin system induced by the free Hamiltonian
ω1
ω0

Ĥ, which are of frequency 2π ω1
ω0

, are the fast oscillations of the carrier wave in !gure
3. As a transient behaviour, it is erased in the effective dynamics. By erasing these oscil-
lations, the effective dynamics focus on the behaviour related to V̄θ6 permitting the study
of the long-term effects of the nonlinearity in the device. Roughly speaking, the effective
dynamics corresponds then to randomly kicked spin following the law de!ned by ρ6, and
then e−ınHeff

ε (θ6)|ψ〉 ≈ 1√
2
(e−ınp0λ|0〉 + e−ınp1λ|1〉) (since p0 is the ratio of kicks in the up direc-

tion). The survival probability is then |〈ψ|e−ınHeff
ε (θ6)|ψ〉|2 ≈ 1+cos((p0−p1)nλ)

2 and oscillates with
a period 2π

(p0−p1)λ . If all kicks had been in the up direction, the survival probability oscillation
period would have been 2π

λ 4 63. We see !gure 3, than due the kicks in the opposite direction

12
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Figure 3. Comparision of the true dynamics |〈ψ|Un(θ6)|ψ〉|2 and the effective dynam-
ics |〈ψ|e−ınHeff

ε (θ6)|ψ〉|2 for the orbit e = 6 during 12 almost-periods, with ω1
ω0

= 3.5 and
|ψ〉 = 1√

2
(|0〉 + |1〉).

Figure 4. Comparision of the true stroboscopic survival probability |〈ψ|Unpε,θ5
(θ5)|ψ〉|2

and the effective stroboscopic survival probability |〈ψ|e−ı(npε,θ5
+1)Heff

ε (θ5)|ψ〉|2 for the
orbit e = 5, with ω1

ω0
= 4.5 and |ψ〉 = 1√

2
(|0〉 + |1〉). We see a small dephasing occur-

ring with a large number of almost-periods. The average stroboscopic !delity during 12
almost-periods is 99.7% whereas due to the dephasing, during 120 almost-periods, it is
only 93.9%. This dephasing is due to the fact that numerically we work with the !rst
recurrence Hamiltonian Heff

ε which is only an approximation of the SK Hamiltonian up
to an error ε/pε (equation (10)). So after n almost-periods, the error in the evolution
operator is of magnitude nε. Because ε = 10−2, this error induced the dephasing for
large values of n.
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Table 2. Average stroboscopic !delity of the effective dynamics during 12 almost-
periods with |ψ〉 = 1√

2
(|0〉 + |1〉), for the different orbits and for different values of ω1

ω0
.

We write in bold the good results ($ 97%), in sans serif style the correct results ($ 90%),
in normal style the middling results ($ 75%) and in italic the bad results (< 75%).

High freq. ω1
ω0

* 1 Medium freq. ω1
ω0

∼ 1 Low freq. ω1
ω0

3 1

e
√

2
100 0.03 0.04

√
2 3.4 4.5 100

√
2 101.3 104.5

0 74.3% 74.4% 79.1% 77.6% 74.2% 75.0% 74.6% 78.3% 61.6%
1 100% 100% 98.0% 100% 99.6% 99.9% 98.1% 83.7% 98.0%
2 100% 100% 100% 98.8% 98.6% 91.8% 69.4% 74.8% 73.2%
3 100% 100% 100% 99.1% 98.7% 98.6% 73.7% 99.4% 95.8%
4 100% 100% 100% 100% 100% 99.7% 99.4% 99.9% 99.9%
5 100% 100% 100% 100% 99.8% 99.7% 99.9% 99.8% 70.8%
6 100% 100% 100% 100% 99.8% 100% 98.9% 98.9% 97.9%
7 100% 100% 100% 100% 100% 100% 92.9% 99.8% 99.7%
8 100% 100% 100% 100% 100% 100% 99.6% 99.7% 99.9%

the period is slightly larger (p0 is indeed close to 1, since Γ6 is closed to the two-cyclic orbit
(π, 0) # (π, π) for which V(π, 0) = V(π, π) = λ|0〉〈0|).

It is more interesting to study the stroboscopic !delity equation (37). As illustration, we can
see !gure 4. In order to enlighten the ef!ciency of the effective description for the stroboscopic
dynamics we have compute the average stroboscopic !delity:

Fstr(θ) =
1

N + 1

N∑

n=0

Fstr
n (θ) (44)

at short term (N = 12 almost-periods) and at long term (N = 120 almost-periods), for the three
regimes (low, medium and high frequency). Since we have shown that the behaviours are very
sensitive to the value of ω1

ω0
we have considered for each regime three different values of the

period ratio. The results are presented tables 2 and 3.These results are in accordance with the
discussion of the section 3.2. Except for the case of the chaotic orbit Orb(θ0), the average stro-
boscopic !delity is large for the high frequency regime whereas it is good in the low frequency
regime only at short term. This situation where the effective Hamiltonian describes very cor-
rectly the dynamics at high frequency but not at low frequency exists also for periodic systems,
as in the system described in reference [27]. In this one, the bad behaviour at low frequency is
interpreted as the result of resonances between the quantum system and the periodic control. We
can propose a similar interpretation here, as viewed section 3.1.1, at low frequency, resonances
between the quantum system and the almost periodic control occur if ω1

ω0
∈ N∗

pε,θ
(!gure 1).

Due to the closeness of these resonances, the effective Hamiltonian (depending only on funda-
mental quasi-energy states) fails to describe completely the dynamics, and an approach taking
into account all quasi-energy states (as in ref. [23]) is needed. In contrast, at high frequency,
the possible resonances evoked section 3.1.2, λ|p0 − p1| ∈ 2πN∗

pε,θ
, depend only on the charac-

teristics of the interaction V̄θ (and not on the quantum system itself) and are unlikely for a
generic orbit.

Moreover the results seem better in the double small island and in the centre of the big island,
con!rming that with a too large orbit diameter ∠Orb(θ) the stroboscopic !delity is lower.
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Table 3. Same as table 2 but with averaging during 120 almost-periods. Moreover for
the orbit e = 0 the presented results correspond to ε = 10−1 (whereas ε = 10−2 for the
other orbits).

High freq. ω1
ω0

* 1 Medium freq. ω1
ω0

∼ 1 Low freq. ω1
ω0

3 1

e
√

2
100 0.03 0.04

√
2 3.4 4.5 100

√
2 101.3 104.5

0 61.5% 64.1% 68.1% 68.1% 69.2% 66.4% 72.0% 66.5% 72.5%
1 100% 100% 61.0% 99.5% 98.0% 99.9% 91.4% 65.9% 62.5%
2 99.9% 99.9% 99.9% 79.7% 71.6% 64.1% 72.6% 64.2% 69.8%
3 99.9% 99.8% 99.7% 88.7% 60.0% 91.0% 70.2% 93.3% 80.1%
4 100% 100% 100% 99.2% 98.9% 76.6% 93.7% 96.6% 97.3%
5 97.9% 98.4% 98.4% 98.9% 96.2% 93.9% 92.6% 99.1% 71.1%
6 99.8% 99.8% 99.8% 99.6% 95.2% 99.8% 60.6% 91.4% 66.6%
7 100% 100% 100% 100% 99.5% 100% 61.6% 76.3% 97.1%
8 99.3% 99.3% 99.3% 99.3% 99.3% 99.2% 98.4% 94.7% 99.0%

Figure 5. Survival probability of a quasi-energy state |〈Zµi6, θ6|Un(θ6)|Zµi6, θ6〉|2 for
the orbit e = 6 during 12 almost-periods with ω0

ω1
= 3.4. The circles show the survival

probabilities at each almost-period {mpε,θ6}m=0,...,12.

4.2. Almost steady states

By construction, we know that |〈Zµie,ϕ
n+1(θ)|Un(θ)|Zµi, θ〉|2 = 1. We are interested by the

survival probability Psurv
n (θ) = |〈Zµie, θ|Un(θ)|Zµie, θ〉|2, as for example !gure 5. As expected,

the quasi-energy states presents quasi-recurrences at each almost-period (in the same condi-
tions than the previous discussion about the stroboscopic !delity). But we can see also, that
the "uctuations during the transient regime (between two almost-periods) seems not too large.
With different parameters, the quasi-energy state is even an almost steady state as we can see
it !gure 6. To enlight this behaviour, we have compute the average survival probability:

Psurv(θ) =
1

N + 1

N∑

n=0

Psurv
n (θ) (45)
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Figure 6. Same as !gure 5 but with ω1
ω0

= 0.04.

Table 4. Average survival probability of a quasi-energy state during 120 almost-periods
for different orbits and different values of ω1

ω0
. For the orbit e = 0 the presented results

correspond to ε = 10−1 (whereas ε = 10−2 for the other orbits). We write in bold the
good results ($ 97%), in sans serif style the correct results ($ 90%), in normal style the
middling results ($ 75%) and in italic the bad results (< 75%).

High freq. ω1
ω0

* 1 Medium freq. ω1
ω0

∼ 1 Low freq. ω1
ω0

3 1

e
√

2
100 0.03 0.04

√
2 3.4 4.5 100

√
2 101.3 104.5

0 42.6% 54.7% 48.0% 46.3% 49.6% 49.4% 50.0% 52.0% 51.3%
1 93.7% 94.4% 80.0% 92.2% 97.0% 99.6% 94.9% 72.1% 89.%
2 99.9% 99.9% 99.8% 90.5% 87.7% 82.5% 80.7% 45.0% 55.1%
3 99.9% 99.8% 99.8% 88.7% 91.7% 95.9% 62.8% 95.7% 58.3%
4 99.9% 99.8% 99.8% 99.3% 97.6% 84.5% 97.3% 95.4% 98.2%
5 99.9% 100% 100% 99.7% 98.0% 98.4% 87.9% 99.0% 75.0%
6 99.9% 99.9% 99.9% 99.3% 88.8% 98.0% 68.9% 96.8% 94.8%
7 99.9% 99.9% 99.9% 98.9% 67.5% 97.0% 55.9% 80.3% 92.6%
8 100% 100% 100% 100% 100% 99.9% 98.2% 98.0% 99.8%

during N = 120 almost-periods for the three regimes (low, medium and high frequency). The
results are presented table 4.The steadiness of the quasi-energy state seems better in the centre
of the islands, con!rming that ∠Orb(θ) must be small. Moreover it seems better for orbits
with small almost-periods. Due to the dependency to ω1

ω0
of V(θ), the steadiness of the quasi-

energy state is valid only for high and medium frequency regimes. Note that the results do
not depend on the time scale, we !nd very close survival probabilities by averaging during 12
almost-periods and by averaging during 120 almost-periods.

For the chaotic orbit e = 0, we can have an almost steadiness of the quasi-energy states only
during the !rst almost-period (because of the sensitivity to initial conditions), and for ε not too
small (because pε,θ0 must not be too large). We can see this with !gure 7 and table 5. But since
the Orb(θ0) covers a large part of T2, the steadiness is middling for the chaotic orbit.

As shown in reference [8, 9], in semi-classical light–matter interaction, the Floquet
quasienergy states associated with the periodic oscillations of the electromagnetic !eld are

16



J. Phys. A: Math. Theor. 54 (2021) 414004 D Viennot

Figure 7. Survival probability of a quasi-energy state |〈Zµi0, θ0|Un(θ0)|Zµi0, θ0〉|2 for
the chaotic orbit e = 0 during 1 almost-period with ω1

ω0
= 0.03.

Table 5. Same as table 4 but with the averaging during 1 almost-period and with ε =
10−1.

High freq. ω1
ω0

* 1 Medium freq. ω1
ω0

∼ 1 Low freq. ω1
ω0

3 1

e
√

2
100 0.03 0.04

√
2 3.4 4.5 100

√
2 101.3 104.5

0 89.7% 89.3.7% 96.8% 57.4% 73.3% 47.3% 75.7% 70.3% 53.9%

related to the quantum dressed states (of the atom dressed by the photons). So in the semi-
classical theory, the Floquet quasienergy states can be viewed as the states of the atom dressed
by the classical electromagnetic !eld. By extension, we can view the SK quasienergy states
|Zµie, θ〉 as the states of the spin (in this example) dressed by the chaotic environment described
by the standard map (i.e. the spin dressed by the ‘set’ of ultrashort magnetic pulses). The
dressed picture consists to consider a larger system constituted by the quantum system and its
‘environment’ described by a classical "ow. So an eigenvector of the dressed system physically
corresponds to an equilibrium between the system and its environment. For the periodic cases,
this equilibrium is a true steady state. But for the almost-periodic cases, due to the irregular-
ities of the almost-periodicity, a quasienergy state represents a dynamical equilibrium rather
than a steady equilibrium. As viewed !gure 5 with small irregularities (island of stability), the
quantum system can temporalily leaves the quasienergy state, but the dynamics send the sys-
tem back to it, inducing the small "uctuations. The main regularity, i.e. the almost-periodicity,
ensures only the quasi-recurrence at each almost-period. And as viewed !gure 6, at high fre-
quency, the spin being kicked very quickly, it does not have time to change between two kicks.
The steadiness is then better. In contrast, in the chaotic sea (!gure 7), the irregularities are large
and the ‘return to equilibrium’ of the dynamics starting from a quasienergy state, is dif!cult.
This induces large erratic "uctuations.

4.3. True steady states

The steadiness viewed in the previous section is just an approximation in some conditions. But
we can use equation (3) to built true steady states by considering a set of copies of the driven
quantum system and not only a single one. For example, consider Orb(θ6) and 26 copies of
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the driven quantum system. We suppose that the copy labelled by (m) (m ! 25), has ϕm(θ6)
as initial condition for its kick system. We choose as initial states for the different copies, the
quasi-energy states:

|ψ(m)
0 〉 = |Zµi6,ϕm(θ6)〉. (46)

After one quick, we have

U(ϕm(θ6))|ψ(m)
0 〉 = e−ıχi6 |Zµi6,ϕm+1(θ6)〉. (47)

Everything happens as if the copy (m) takes the place of the copy (m + 1) (for m < 25) and
as if the copy (25) takes the place of the copy (0) (since ϕ26(θ6) = θ6 + O(ε)). The set of 26
copies is then unchanged by the dynamics (even if individually each copy changes). We have
then a true steady state (up to an error of magnitude ε) by considering the mixed state of the
set of copies:

ρn =
1

26

25∑

m=0

Un(ϕm(θ6))|ψ(m)
0 〉〈ψ(m)

0 |Un(ϕm(θ6))†. (48)

If the initial mixed state is the quasi-energy state of the orbit, ρn does not evolve up to an
error of magnitude ε. This reasoning can be applied to all orbit, and to many orbits together.
For example, we consider the small island of stability into the chaotic sea. We consider
N = 1391 copies of the quantum system, with kick initial conditions corresponding to the
points of Orb(θ6), Orb(θ7), Orb(θ8) and the 893 points of Orb(θ0) corresponding to the pre-
cision ε = 2 × 10−1 (ε = 10−2 for the orbits in the small island). We consider the following
density matrix

ρn =
1
N

N∑

m=1

Un(θ(m))|ψ(m)
0 〉〈ψ(m)

0 |Un(θ(m))†, (49)

where θ(m) is the kick initial condition of the copy (m); with the two initial states: |ψ(m)
0 〉 =

|Zµiem , θ(m)〉 (with θ(m) ∈ Orb(θem )), and |ψ(m)
0 〉 = |0〉 (for comparison). A population and the

coherence of ρn are drawn !gure 8. As expected, ρZµ,0 is a steady states whereas any state
presents oscillations due to the almost-periodicities of the four orbits.

We can relate this result to another physical situation. Suppose that we sent a regular train
of ultrashort magnetic pulses onto a spin lattice (constituted by the N = 1391 spins in a solid
medium without mutual interaction). The pulses must then go across the matter which is the
support of the spins before reaching these ones, the scattering of light in the medium being
supposed chaotic. We model this chaotic scattering by the standard map: it induces delays and
polarization changes on the scattered pulses. Each spin views then a different train described
by a different initial condition θ(m). The spins associated with θ(m) in the double small island
(almost regular orbits {Orb(θ6), Orb(θ7), Orb(θ8)}) are close to the surface of the solid (the
pulses go across a small distance and the scattering is still regular), whereas the spins associated
with θ(m) in the chaotic sea are deep in the solid (the scattering of the pulses is now chaotic). Due
to the chaotic scattering, the spin lattice is submitted to decoherence and relaxation processes.
Its density matrix evolves then to a steady state which is actually ρZµ,0 (theorem 5 in reference
[23] proves that the mixed state of such a system converges at long time to a combination of
fundamental quasienergy density matrices).
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Figure 8. Population of the state |0〉 (up) and coherence (down) of the mixed states ρ0,n
(with ρ0,0 = |0〉〈0|) and ρZµ,n (with ρZµ,0 = 1

N

∑N
m=1|Zµie(m) , θ(m)〉〈Zµie(m) , θ(m)|) during

2 almost-periods in the chaotic sea (with ε = 2 × 10−1) with ω0
ω1

= 3.4

5. Conclusion

The effective Hamiltonian de!ned by the SK approach permits to extend the approach of
the Floquet effective Hamiltonian to quasi-periodically driven systems without knowledge of
the different frequencies of these systems. It can be also applied to chaotically driven sys-
tems, whereas in this case it is dif!cult to exploit the dynamical behaviour (but this a direct
consequence of the de!nition of chaos).
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Appendix A. BCH formula

For some computations, we consider the following version of the Baker–Campbell–Hausdorff
formula [28]:

eXeY = eX+ f X[Y]+O(‖Y‖2), (A.1)

where fX = f (adX) with adX[Y] = [X, Y] (adX is an operator onto the bounded operator space
B(H)) and f (x) = x

1−e−x ( f (adX) is de!ned by functional calculus [29]). We have also

eYeX = (e−Xe−Y)−1 = eX+ f−X [Y]+O(‖Y‖2) (A.2)

and conversely

eX+Y = e f−1
−X [Y]+O(‖Y‖2)eX . (A.3)

To compute fX we have two possibilities. The !rst one consists to use the Taylor series
of f :

f (adX) = 1 −
+∞∑

n=1

(1 − Ad(eX))n

n(n + 1)
, (A.4)

where Ad(g)Y = gYg−1. The second one consists to consider the Hilbert–Schmidt space
of the operators of H ([29]). To simplify the discussion here, we suppose that H is !nite
dimensional (dim H = N). The Hilbert–Schmidt space can be identi!ed to HS = CN2

. The
Hilbert–Schmidt representation of an operator Y ∈ L(H) is then

Y =




Y11 . . . Y1N

...
. . . ...

YN1 . . . YNN



→ |Y〉〉 =





Y11
...

Y1N

Y21
...

YNN





(A.5)

for a matrix representation in the choosen orthonormal basis. The inner product of HS is
〈〈Z|Y〉〉 = tr(Z†Y). We have moreover

|XY〉〉 = X ⊗ 1N |Y〉〉 (A.6)

|YX〉〉 = 1N ⊗ XT|Y〉〉. (A.7)

It follows that adX = X ⊗ 1N − 1N ⊗ XT (where T denotes the transposition). adX can be then
viewed as a N2-order square matrix. Let {xn}n=1,...,N2 be the spectrum of adX and P be such
that P−1adXP = diag(x1, . . . , xN2 ) (the diagonal matrix having (x1, . . . , xN2 ) on the diagonal).
We have then f (adX) = P diag( f (x1), . . . , f (xN2))P−1.
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For example to !nd equation (10) we start from eAeν ε̃ν+O(ε2)e−ıpHeff
=

e−ıpHeff+ f
ıpHeff [Aeν ]ε̃ν+O(ε2). Heff = diag(χe1, . . . ,χeN ) in the basis (|Zµi, θ〉)i=1,...,N , and then

adHeff = diag(0,χe1 − χe2, . . . ,χe1 − χeN ,χe2 − χe1, 0, . . . ,χe2 − χeN , . . . ,χeN − χeN−1, 0).
It follows that

f (adıpHeff ) = diag










1 if j = i

ıp(χei − χe j)
1 − e−ıp(χei−χe j)

if j -= i





i, j

(A.8)

(limx→0 f (x) = 1).

Appendix B. Direct computation of the effective Hamiltonian

Equation (3) which de!nes the quasienergy states can be rewritten as follows:

UK |Zµie〉〉 = e−ıχie |Zµie〉〉, (B.1)

where |Zµie〉〉 ∈ H ⊗ L2(Γ, dµ) and UK = T −1 U, with 〈θ|Zµie〉〉 = |Zµie, θ〉 ∈ H, 〈θ′|U|θ〉 =
U(θ)δ(θ − θ′), and ∀ζ ∈ L2(Γ, dµ)

(T −1ζ)(θ) = ζ(ϕ−1(θ)) (B.2)

or in other words T −1 =
∫
Γ|ϕ−1(θ)〉〈θ|dµ(θ). We have then UK = e−ıHK with

HK =
∑

e

∑

i

∑

λ

(χie − ıλ) f λ|Zµie〉〉〈〈Zµie| f ∗λ (B.3)

by taking into account of the gauge changes (T f λ = eλ f λ). We can then write that:

Heff(θ) = 〈θ|P0HKP0|θ〉, (B.4)

where P0 · P0 is a spectral !ltering selecting only fundamental quasienergies (i.e. excluding
the redundant quasienergies associated with the gauge changes).

Concretely, let Γe be an ergodic component of Γ. Let Orbε(θ0) = {θn = ϕn(θ0)}
n ∈ {0, . . . , pε,θ0 − 1} be the approximated orbit of θ0. By de!nition, ‖ϕpε,θ0 (θ0) − θ0‖ = O(ε)
and since Orb(θ0) = Γe, we have ∀θ ∈ Γe, ∃n ∈ {0, . . . , pε,θ0 − 1} such that ‖θ − θn‖ = O(ε).
Orbε(θ0) can be then viewed as a partition (a discrete approximation) of Γe. The Hilbert space
generated by (|θn〉)n∈{0,...,pε,θ0

−1} is then a !nite representation of L2(Γe, dµ) with the accuracy
ε. The restriction to Γe of the Koopman operator T −1 can then represented by

T −1
|Γe

4 T−1
e =

pε,θ0
−1∑

n=1

|θn〉〈θn−1| + |θ0〉〈θpε,θ0
−1| (B.5)

=





0 0 . . . 0 1
1 0 . . . 0 0
0 1 0 0
...

...
. . . ...

0 0 . . . 1 0




. (B.6)
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It follows that UK restricted to Γe can be approximated by the (dim H × pε,θ0 )-order matrix

UKe =

pε,θ0
−2∑

n=0

U(θn) ⊗ |θn+1〉〈θn| + U(θpε,θ0
−1) ⊗ |θ0〉〈θpε,θ0

−1|. (B.7)

Let (e−ıχae)a∈{1,...,pε,θ0
dim H} = Sp(UKe) be the spectrum of UKe and

(|Zµae〉〉 ∈ Cpε,θ0
dim H)n∈{1,...,pε,θ0

dim H} be the associated eigenvectors. The spectrum of

T−1
e is constituted by the pε,θ0 th roots of unity: Sp(T−1

e ) =

(
e
ı 2nπ

pε,θ0

)

n∈{0,...,pε,θ0
−1}

. The spectral

!ltering consists then to select dim H eigenvalues (eıχie )i∈Ie (with cardIe = dim H) such that:

∀i, j ∈ Ie, i -= j, (χie − χ je mod 2π) /∈ 2Zπ
pε,θ0

(B.8)

!nally, we have ∀θ ∈ Γe

Heff(θ) =
∑

i∈Ie

χie〈θn|Zµie〉〉〈〈Zµie|θn〉 + O(ε) (B.9)

with θn such that ‖θ − θn‖ = O(ε), 〈θn|Zµie〉〉 ∈ Cdim H being the (renormalized) vector
extracted from |Zµie〉〉 ∈ Cpε,θ0

dim H by choosing the dim H components associated with the
(n + 1)th vector of the basis of Cpε,θ0 .

The main dif!culty with this method is that it needs the diagonalization of the large matrix
UKe whereas we need only dim H eigenvectors. For very large matrices, we can compute only
the needed dim H eigenvectors by a matrix partitioning method [30].
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